What is Dual-Polarization Radar and What Can It Do for Me?

Part 1

Presented by: Clark Payne CIMMS and NOAA/NWS/WDTB

5 August 2011

- Describe how dual-polarization radar (dual-pol) works compared to current WSR-88D
- 2. Identify the base and derived products that will be available with dual-pol
- 3. Describe the concept behind each new base product
- Identify the typical values of each base product for rain, hail, snow/ice crystals, and clutter/biological scatterers

1. How Dual-Pol Works

Simultaneous Transmit of Horizontal + Vertical Polarized Energy

<u>CONVENTIONAL</u>

Send/receive horizontal polarization (size only)

• <u>DUAL-POL</u>

Send/receive both horizontal & vertical polarization (size, shape, variety)

2. Base Products Available with Dual-Pol

•Still get:

- Reflectivity(Z)
- Velocity (V)
- Spectrum
 Width (SW)

• Plus

- Differential Reflectivity (ZDR)
- Correlation
 Coefficient
 (CC)
- Specific
 Differential
 Phase (KDP)

2. Melting Layer

Stands out like a sore thumb in CC

Ζ

2. Precipitation (QPE) Products

9 new products Instantaneous HHC DPR

- Accumulation
 STA (i.e. STP)
 - DSA (i.e. STP)
 - OHA (i.e. OHP)
 - DAA (i.e. OHP)
 - DUA (i.e. USP)

Diff (DP – Legacy)DSD

DOD

3. What is Differential Reflectivity?

Definition:

Difference between horizontal and vertical reflectivity factors

Range of Values	<u>Units</u>	Abbreviations
-7.9 to 7.9	decibels (dB)	ZDR or Z _{DR}

 $ZDR = Z_H - Z_V$

3. How Do I Interpret ZDR?

Caveat: Biased toward dominant scatterer!

3. What will ZDR look like?

Ζ

ZDR

24 May 2011 in West Central Oklahoma

3. What is Correlation Coefficient?

• Definition:

 Measure of how similarly the horizontally and vertically polarized pulses are behaving in a pulse volume

Range of Values	<u>Units</u>	Abbreviations
0.2 to 1.05	unitless	CC or ρ _{HV}

3. How Do I Interpret CC?

pulse-to-pulse

pulse for the horizontal and vertical pulses

and vertical pulses

Low CC (< 0.8)

Moderate CC (0.80 to 0.97)

High CC (> 0.97)

3. What will CC look like?

Ζ

CC

24 May 2011 in West Central Oklahoma

3. What is Specific Differential Phase?

• Definition:

Range derivative of the differential phase shift

Range of Values	<u>Units</u>	Abbreviations
-2 to 10	deg/km	KDP or K _{DP}

$$KDP = \frac{\phi_{DP}(r_2) - \phi_{DP}(r_1)}{2(r_2 - r_1)}$$

Φ_{DP} is cumulative Difficult to interpret

PhiDP in GR Analyst

• KDP shows where Φ_{DP} is changing – More meteorologically significant

How Do I Interpret KDP?

Particle Concentration

What will KDP look like?

Ζ

KDP

24 May 2011 in West Central Oklahoma

Typical Values (Rain)

Typical Values (Hail)

	Classic	Melting	Large (D >= 2")
Z	> 55 dBZ	> 60 dBZ	40 – 80 dBZ
ZDR	0 – 1 dB	> 1 dB	-0.5 – 1 dB
СС	0.95 – 0.97	~ 0.95	< 0.9
KDP	~ 0 deg/km	> 3 deg/km	N/A

Typical Values (Snow/Ice)

Z (dBZ)	ZDR (dB)	CC	KDP (deg/km)
< 40	-1 to +5	> 0.95	-1 to +0.5

Density affects ZDR

Melting snow will

have lower CC

Plates Columns Plates Columns and Plates 0.3 Supersaturation (g/m³) Needles Dendrites 0.2-Sectored plates Dendrites Water saturation Hollow columns Columns 0.1-Plates Thin M plates (SZI Solid plates Plates Solid prisms C° 0 -5 -20 -25 -10 -15 -30 -35 0 F° -20 -30 10 32 20 ò -10 Temperature

Courtesy: SnowCrystals.com

Typical Values (Clutter/Biologicals)

	Clutter	Biologicals
Reflectivity (Z)	Anything	< 40 dBZ
Differential Reflectivity (ZDR)	Noisy	Depends on Orientation
Correlation Coefficient (CC)	< 0.8	< 0.8
Specific Differential Phase (KDP)	N/A	N/A

- Send/receive H & V polarization
- 3 new base products
 - ZDR, CC, KDP
- Base products help with
 - drop shape (ZDR)
 - variety (CC)
 - liquid water content (KDP)
- Additional information seen in
 - Rain, Hail, Snow/ice and Clutter/Biologicals

Acknowledgements & Questions

WDTB Dual-Pol Team

 Jami Boettcher, Andrew Wood, Mark Sessing, Cynthia Van Den Broeke, Paul Schlatter, Darrel Kingfield

External Reviewers of Training