

Outline

• Environment • Storm Track • Legacy Radar Data - Classic Hook Echo -Velocity Couplet • Dual-Pol Radar Data - Updraft Column - Debris Ball - Hail Spikes

Image provided courtesy of Paul Knightly

Environment

- High Risk Day over OK
- Dry line Set up
- Strong Forcing Aloft
- MU Cape 4000 J/kg
- Dry Adiabatic Lapse Rates
- Mid 60-70 Dewpoints

Storm Track

Legacy Products KVNX

Image provided courtesy of Paul Knightly

Legacy Products KVNX Hook Echo

Legacy Products KVNX Hook Echo

KVNX Site VST 05/24/2011 20:39:06 Z Prod: 05/24/2011 20:38:56 Z VCP: 212 SMV -0.5351 Select Product CVI C ZDR VILD C BHC NROT Select Tilt 0.5* 0.9* 1.4* 1.9° 4.0* 5.1* 2.4* 3.2* 6.4* 10.1° 12.5° 8.0* 15.7° 19.5* Warnings Flash Flood - 15 Thunderstorm - 9 ▼ Tornado - 2 Product Details: **Other storms influence** 69.5 dbz Max: 282.3° 37.8 nm Ran: the Canton Lake Supercell, allowing for it to fall apart

Legacy Products KVNX More Reflectivity

Legacy Products KVNX More Reflectivity

Legacy Products KVNX Velocity Couplet

Legacy Products KVNX Velocity Couplet

Dual-Pol Products KVNX

Image provided courtesy of Paul Knightly

Dual-Pol Products KVNX Correlation Coefficient

Measure of how similarly the horizontally & vertically polarized pulses are behaving within a pulse vol.
Great at discriminating non vs met echoes

Typical Values for CC

Dual-Pol Products KVNX Correlation Coefficient – Debris Signature Surface

Dual-Pol Products KVNX Correlation Coefficient – Debris Signature Surface

Dual-Pol Products KVNX Correlation Coefficient – Debris Signature Aloft

Dual-Pol Products KVNX Correlation Coefficient – Hail Spikes

Dual-Pol Products KVNX Differential Reflectivity Diff between the Horizontal & **Vertical reflectivity factor** Good indicator of mean drop size diameter echoes

ZDR (-0.5 - 1) aligned with high reflectivity.

Thunderstorm - 2
Tornado - 0
Product Details:

69.0 dbz 215.3° 39.3 nm

Even though reflectivity has high values, both CC and ZDR are not showing hail signatures.

Thunderstorm - 2
Tornado - 0
Product Details:

70.5 dbz 276.2° 38 4 nm

The updraft columns of the storms are more noticeable using ZDR & CC.

In this slice, not only can you see an updraft column but also the debris ball aloft.

you find the others?

Wrap-Up

- Given the environment, the Canton Supercell could have lasted longer, but surrounding cells and outflow caused the storm to lose its structure.
- Using the dual-pol products, can enhances the warning decision operators confidence in hail size and location, tornadic debris, and updraft column.
- Forecasters should try to incorporate but not rely solely on the dual-pol products, as there are still errors in some of the data.
- There is still more to be learn and discover about dual-pol, as we only discussed 2 parameters.

Image provided courtesy of Paul Knightly

Thanks

- Ken Cook for giving this presentation.
- NWS Wichita for the data and guidance.
- NWS OUN for the detail information on the tornado.
- WDTB for Dual-Pol graphics.

Image provided courtesy of Paul Knightly

