What is Dual-Polarization Radar and <u>What can it do for me</u>? Part 2

Jerilyn Billings NOAA/NWS Wichita, KS

Applications

- New Base Varibles
 - Differential Reflectivity (ZDR)
 - Corrleation Coefficient (CC)
 - Specific Differential Phase (KDP)

 Utilizing the new variables in concert with the base data (Z,V,SW), Meteorologist's can apply the data in new ways.

Hail Detection

Hail Detection Physical Characteristics of Hail Aloft

- Size widely varies
- Irregularly shaped
- Can tumble
 - "Looks" spherical to radar

Dual-pol Base Data Characteristics in Regions of Hail

- Very high Z (> 55 dBZ)
- Variable ZDR:
 - Usually low(-0.5 +1.5dB)
 - Positive when mixed with rain!
- Low CC (0.70-0.95)
 If melting hail, high KDP (>1.5 deg/km)
 - Very Low CC (<.90) will be void in KDP

Strengths and Limitations of Dual-pol Hail Detection

- Strengths
 - More robust than using Z alone
 - Can see hail signature in ZDR and/or CC even when Z is questionable
 - Can detect significant hail (> 2 inches diameter)
 - TBSS easier to detect
- Limitations
 - No explicit size estimation
 - Differentiation between marginally severe and non-severe hail
 - If hail is detected, sometimes still not possible to tell if it is reaching the ground

Tornadic Debris Detection

Physical Characteristics of Tornadic Debris

- Variable size, larger than meteorological scatterers
- Irregularly shaped
- Randomly oriented/tumbling

Dual-pol Radar Characteristics of Tornadic Debris

- Must have: Strong rotational signature in SRM
- High Reflectivity
- ZDR near 0 dB
- CC typically less than ~0.80

Strengths and Limitations of Dual-pol Tornadic Debris Detection

Strengths

- Indicates a tornado is occurring and that it is doing damage
- Allows for specificity within a mile or less of the location of the tornado and torn radar location errors
- Limitations
 - Not a predictor of a
 - Must be close range
 - Tornado must hit som.

Jduce a signature

Maximum Dependable Range 60km (strong tornadoes further)

Updraft Detection

Updraft Detection

1

2

 "ZDR columns": regions of liquid water (strongly positive ZDR) found above the environmental 0°C height

3456

Precipitation Estimation

Characteristics of Heavy Rain are Dependent on the Near Storm Environment

 Provides
 expectations of the rainfall signatures you should expect

- Tropical
- Cold rain processes
- Possibly mixed with hail

Purpose: QPE Specific to Hydrometeor Type!

Dual-pol Base Data Characteristics of Heavy Rain: Tropical

- Fairly high 40 > Z > 55 dBZ
- 0.5 > ZDR > 3.0 dB
- CC > 0.98
- KDP > 1.0 deg/km

Dual-pol Base Data Characteristics of Heavy Rain: Continental

- High 50 > Z > 60 dBZ
- 2.0 > ZDR > 5.0 dB
- CC > 0.96
- KDP > 1.0 deg/km

Dual-pol QPE Limitations

- All standard radar limitations apply!
- Biases are not currently applied
- Relations derived empirically

Winter Weather

Winter Weather

 The use of the new dual-pol variables will help identify between frozen and liquid hydrometeors. They will also help identify areas of homogeneous and nonhomogeneous hydrometeors.

Melting Layer

Melting LayerReflectivityCorrelation Coefficient

- Bright band not always visible
- Shows up as a ring of low correlation coefficient

Rain vs. Snow Reflectivity Differential Reflectivity

- Rain/Melting layer: ZDR > 1 dB and generally noisy
- Snow: ZDR < 0.5 dB

Rain vs. Snow

Reflectivity

Correlation Coefficient

Transition from high to low CC marks the rain/snow transition line

What can it do for me?

 Using a combination of Dual-Pol Variables and Base data, we can identify new features...or at the very least it gives us as meteorologists confidence in what we are seeing with the base data. • Extra Slides

Non-Precipitation Echo Detection

Non-Precipitation Echo Detection

